Acquisition Function Expected Improvement Per Second
Source:R/AcqFunctionEIPS.R
mlr_acqfunctions_eips.Rd
Expected Improvement per Second.
It is assumed that calculations are performed on an bbotk::OptimInstanceBatchSingleCrit.
Additionally to target values of the codomain that should be minimized or maximized, the
bbotk::Objective of the bbotk::OptimInstanceBatchSingleCrit should return time values.
The column names of the target variable and time variable must be passed as cols_y
in the
order (target, time)
when constructing the SurrogateLearnerCollection that is being used as a
surrogate.
Dictionary
This AcqFunction can be instantiated via the dictionary
mlr_acqfunctions or with the associated sugar function acqf()
:
References
Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.), Advances in Neural Information Processing Systems, volume 25, 2951–2959.
Super classes
bbotk::Objective
-> mlr3mbo::AcqFunction
-> AcqFunctionEIPS
Public fields
y_best
(
numeric(1)
)
Best objective function value observed so far. In the case of maximization, this already includes the necessary change of sign.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
AcqFunctionEIPS$new(surrogate = NULL)
Arguments
surrogate
(
NULL
| SurrogateLearnerCollection).
Examples
if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)
fun = function(xs) {
list(y = xs$x ^ 2, time = abs(xs$x))
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"), time = p_dbl(tags = "time"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
learner = default_gp()
surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)
surrogate$cols_y = c("y", "time")
acq_function = acqf("eips", surrogate = surrogate)
acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
}
#> acq_eips
#> <num>
#> 1: 4.401246
#> 2: 4.864655
#> 3: 5.297142