S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm Acquisition Function.
Parameters
"lambda"(numeric(1))
\(\lambda\) value used for the confidence bound. Defaults to1. Based onconfidence = (1 - 2 * dnorm(lambda)) ^ myou can calculate a lambda for a given confidence level, see Ponweiser et al. (2008)."epsilon"(numeric(1))
\(\epsilon\) used for the additive epsilon dominance. Can either be a single numeric value > 0 orNULL(default). In the case of beingNULL, an epsilon vector is maintained dynamically as described in Horn et al. (2015).
Note
This acquisition function always also returns its current epsilon values in a list column (
acq_epsilon). These values will be logged into the bbotk::ArchiveBatch of the bbotk::OptimInstanceBatch of the AcqOptimizer and therefore also in the bbotk::Archive of the actual bbotk::OptimInstance that is to be optimized.
References
Ponweiser, Wolfgang, Wagner, Tobias, Biermann, Dirk, Vincze, Markus (2008). “Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selection.” In Proceedings of the 10th International Conference on Parallel Problem Solving from Nature, 784–794.
Horn, Daniel, Wagner, Tobias, Biermann, Dirk, Weihs, Claus, Bischl, Bernd (2015). “Model-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark.” In International Conference on Evolutionary Multi-Criterion Optimization, 64–78.
See also
Other Acquisition Function:
AcqFunction,
mlr_acqfunctions,
mlr_acqfunctions_aei,
mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi,
mlr_acqfunctions_ehvigh,
mlr_acqfunctions_ei,
mlr_acqfunctions_ei_log,
mlr_acqfunctions_eips,
mlr_acqfunctions_mean,
mlr_acqfunctions_multi,
mlr_acqfunctions_pi,
mlr_acqfunctions_sd,
mlr_acqfunctions_stochastic_cb,
mlr_acqfunctions_stochastic_ei
Super classes
bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionSmsEgo
Public fields
ys_front(
matrix())
Approximated Pareto front. Signs are corrected with respect to assuming minimization of objectives.ref_point(
numeric())
Reference point. Signs are corrected with respect to assuming minimization of objectives.epsilon(
numeric())
Epsilon used for the additive epsilon dominance.progress(
numeric(1))
Optimization progress (typically, the number of function evaluations left). Note that this requires the bbotk::OptimInstanceBatch to be terminated via a bbotk::TerminatorEvals.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
AcqFunctionSmsEgo$new(surrogate = NULL, lambda = 1, epsilon = NULL)Arguments
surrogate(
NULL| SurrogateLearnerCollection).lambda(
numeric(1)).epsilon(
NULL|numeric(1)).
Method update()
Update the acquisition function and set ys_front, ref_point and epsilon.
Examples
if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)
fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
learner = default_gp()
surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)
acq_function = acqf("smsego", surrogate = surrogate)
acq_function$surrogate$update()
acq_function$progress = 5 - 4 # n_evals = 5 and 4 points already evaluated
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
}
#> acq_smsego acq_epsilon
#> <num> <list>
#> 1: -581.3276 0,0
#> 2: -730.5624 0,0
#> 3: -1132.3142 0,0