Surrogate Model Containing Multiple Learners
Source:R/SurrogateLearnerCollection.R
SurrogateLearnerCollection.RdSurrogate model containing multiple mlr3::LearnerRegr.
The mlr3::LearnerRegr are fit on the target variables as indicated via cols_y.
Note that redundant mlr3::LearnerRegr must be deep clones.
Parameters
catch_errorslogical(1)
Should errors during updating the surrogate be caught and propagated to theloop_functionwhich can then handle the failed acquisition function optimization (as a result of the failed surrogate) appropriately by, e.g., proposing a randomly sampled point for evaluation? Default isTRUE.impute_methodcharacter(1)
Method to impute missing values in the case of updating on an asynchronous bbotk::ArchiveAsync with pending evaluations. Can be"mean"to use mean imputation or"random"to sample values uniformly at random between the empirical minimum and maximum. Default is"random".
Super class
mlr3mbo::Surrogate -> SurrogateLearnerCollection
Public fields
learner(list of mlr3::LearnerRegr)
List of mlr3::LearnerRegr wrapped as surrogate models.input_trafo(InputTrafo)
Input transformation.output_trafo(OutputTrafo)
Output transformation.
Active bindings
print_id(
character)
Id used when printing.n_learner(
integer(1))
Returns the number of surrogate models.packages(
character())
Set of required packages. A warning is signaled if at least one of the packages is not installed, but loaded (not attached) later on-demand viarequireNamespace().feature_types(
character())
Stores the feature types the surrogate can handle, e.g."logical","numeric", or"factor". A complete list of candidate feature types, grouped by task type, is stored inmlr_reflections$task_feature_types.properties(
character())
Stores a set of properties/capabilities the surrogate has. A complete list of candidate properties, grouped by task type, is stored inmlr_reflections$learner_properties.predict_type(
character(1))
Retrieves the currently active predict type, e.g."response".output_trafo_must_be_considered(
logical(1))
Whether a transformation has been applied to the target variable that has not been inverted during prediction.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
SurrogateLearnerCollection$new(
learners,
input_trafo = NULL,
output_trafo = NULL,
archive = NULL,
cols_x = NULL,
cols_y = NULL
)Arguments
learners(list of mlr3::LearnerRegr).
input_trafo(InputTrafo |
NULL). InputTrafo to be applied.output_trafo(OutputTrafo |
NULL). OutputTrafo to be applied.archive(bbotk::Archive |
NULL)
bbotk::Archive of the bbotk::OptimInstance.cols_x(
character()|NULL)
Column id's of variables that should be used as features. By default, automatically inferred based on the archive.cols_y(
character()|NULL)
Column id's of variables that should be used as targets. By default, automatically inferred based on the archive.
Method predict()
Predict mean response and standard error.
Returns a named list of data.table::data.table().
Each contains the mean response and standard error for one col_y.
Arguments
xdt(
data.table::data.table())
New data. One row per observation.
Returns
named list of data.table::data.table() with the columns mean and se.
Examples
if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud") &
requireNamespace("ranger")) {
library(bbotk)
library(paradox)
library(mlr3learners)
fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
xdt = generate_design_random(instance$search_space, n = 4)$data
instance$eval_batch(xdt)
learner1 = default_gp()
learner2 = default_rf()
surrogate = srlrn(list(learner1, learner2), archive = instance$archive)
surrogate$update()
surrogate$learner
surrogate$learner[["y1"]]$model
surrogate$learner[["y2"]]$model
}
#> Loading required namespace: ranger
#> $model
#> Ranger result
#>
#> Call:
#> ranger::ranger(dependent.variable.name = task$target_names, data = data, keep.inbag = TRUE, min.bucket = 3L, min.node.size = 3L, num.threads = 1L, num.trees = 500L, sample.fraction = 1, splitrule = "variance", mtry = 1)
#>
#> Type: Regression
#> Number of trees: 500
#> Sample size: 4
#> Number of independent variables: 1
#> Mtry: 1
#> Target node size: 3
#> Variable importance mode: none
#> Splitrule: variance
#> OOB prediction error (MSE): 50.63955
#> R squared (OOB): -0.3238282
#>
#> $mu_sigma
#> $mu_sigma[[1]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[2]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[3]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[4]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[5]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[6]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[7]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[8]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[9]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[10]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[11]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[12]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[13]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[14]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[15]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[16]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[17]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[18]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[19]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[20]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[21]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[22]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[23]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[24]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[25]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[26]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[27]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[28]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[29]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[30]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[31]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[32]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[33]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[34]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[35]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[36]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[37]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[38]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[39]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[40]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[41]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[42]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[43]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[44]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[45]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[46]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[47]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[48]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[49]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[50]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[51]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[52]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[53]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[54]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[55]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[56]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[57]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[58]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[59]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[60]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[61]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[62]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[63]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[64]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[65]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[66]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[67]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[68]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[69]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[70]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[71]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[72]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[73]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[74]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[75]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[76]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[77]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[78]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[79]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[80]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[81]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[82]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[83]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[84]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[85]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[86]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[87]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[88]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[89]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[90]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[91]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[92]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[93]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[94]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[95]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[96]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[97]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[98]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[99]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[100]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[101]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[102]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[103]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[104]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[105]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[106]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[107]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[108]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[109]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[110]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[111]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[112]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[113]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[114]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[115]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[116]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[117]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[118]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[119]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[120]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[121]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[122]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[123]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[124]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[125]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[126]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[127]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[128]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[129]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[130]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[131]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[132]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[133]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[134]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[135]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[136]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[137]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[138]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[139]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[140]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[141]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[142]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[143]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[144]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[145]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[146]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[147]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[148]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[149]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[150]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[151]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[152]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[153]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[154]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[155]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[156]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[157]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[158]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[159]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[160]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[161]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[162]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[163]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[164]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[165]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[166]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[167]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[168]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[169]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[170]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[171]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[172]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[173]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[174]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[175]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[176]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[177]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[178]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[179]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[180]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[181]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[182]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[183]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[184]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[185]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[186]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[187]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[188]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[189]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[190]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[191]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[192]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[193]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[194]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[195]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[196]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[197]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[198]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[199]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[200]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[201]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[202]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[203]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[204]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[205]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[206]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[207]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[208]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[209]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[210]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[211]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[212]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[213]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[214]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[215]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[216]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[217]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[218]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[219]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[220]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[221]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[222]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[223]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[224]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[225]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[226]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[227]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[228]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[229]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[230]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[231]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[232]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[233]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[234]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[235]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[236]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[237]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[238]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[239]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[240]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[241]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[242]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[243]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[244]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[245]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[246]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[247]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[248]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[249]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[250]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[251]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[252]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[253]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[254]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[255]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[256]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[257]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[258]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[259]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[260]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[261]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[262]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[263]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[264]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[265]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[266]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[267]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[268]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[269]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[270]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[271]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[272]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[273]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[274]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[275]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[276]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[277]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[278]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[279]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[280]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[281]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[282]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[283]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[284]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[285]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[286]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[287]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[288]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[289]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[290]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[291]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[292]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[293]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[294]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[295]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[296]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[297]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[298]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[299]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[300]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[301]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[302]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[303]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[304]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[305]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[306]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[307]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[308]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[309]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[310]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[311]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[312]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[313]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[314]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[315]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[316]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[317]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[318]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[319]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[320]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[321]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[322]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[323]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[324]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[325]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[326]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[327]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[328]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[329]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[330]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[331]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[332]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[333]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[334]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[335]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[336]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[337]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[338]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[339]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[340]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[341]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[342]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[343]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[344]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[345]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[346]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[347]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[348]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[349]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[350]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[351]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[352]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[353]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[354]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[355]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[356]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[357]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[358]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[359]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[360]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[361]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[362]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[363]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[364]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[365]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[366]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[367]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[368]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[369]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[370]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[371]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[372]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[373]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[374]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[375]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[376]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[377]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[378]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[379]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[380]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[381]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[382]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[383]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[384]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[385]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[386]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[387]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[388]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[389]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[390]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[391]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[392]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[393]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[394]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[395]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[396]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[397]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[398]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[399]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[400]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[401]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[402]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[403]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[404]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[405]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[406]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[407]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[408]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[409]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[410]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[411]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[412]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[413]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[414]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[415]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[416]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[417]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[418]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[419]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[420]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[421]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[422]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[423]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[424]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[425]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[426]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[427]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[428]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[429]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[430]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[431]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[432]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[433]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[434]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[435]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[436]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[437]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[438]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[439]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[440]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[441]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[442]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[443]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[444]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[445]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[446]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[447]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[448]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[449]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[450]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[451]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[452]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[453]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[454]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[455]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[456]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[457]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[458]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[459]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[460]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[461]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[462]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[463]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[464]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[465]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[466]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[467]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[468]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[469]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[470]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[471]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[472]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[473]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[474]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[475]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[476]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[477]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[478]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[479]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[480]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[481]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[482]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[483]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[484]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[485]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[486]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[487]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[488]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[489]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[490]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[491]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[492]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[493]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[494]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[495]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[496]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[497]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[498]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[499]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#> $mu_sigma[[500]]
#> mu sigma2
#> [1,] 4.031222 38.25236
#>
#>