Abstract output transformation class.
An output transformation can be used within a Surrogate to perform a transformation of the target variable(s).
See also
Other Output Transformation:
OutputTrafoLog,
OutputTrafoStandardize,
mlr_output_trafos
Active bindings
label(
character(1))
Label for this object.man(
character(1))
String in the format[pkg]::[topic]pointing to a manual page for this object.packages(
character())
Set of required packages. A warning is signaled if at least one of the packages is not installed, but loaded (not attached) later on-demand viarequireNamespace().state(named
list()|NULL)
List of meta information regarding the parameters and their state.cols_y(
character()|NULL)
Column ids of target variables that should be transformed.max_to_min(
-1|1)
Multiplicative factor to correct for minimization or maximization.invert_posterior(
logical(1))
Should the posterior predictive distribution be inverted when used within a SurrogateLearner or SurrogateLearnerCollection?
Methods
Method new()
Creates a new instance of this R6 class.
Usage
OutputTrafo$new(invert_posterior, label = NA_character_, man = NA_character_)Arguments
invert_posterior(
logical(1))
Should the posterior predictive distribution be inverted when used within a SurrogateLearner or SurrogateLearnerCollection?label(
character(1))
Label for this object.man(
character(1))
String in the format[pkg]::[topic]pointing to a manual page for this object.
Method update()
Learn the transformation based on observed data and update parameters in $state.
Must be implemented by subclasses.
Arguments
ydt(
data.table::data.table())
Data. One row per observation with at least columns$cols_y.
Method transform()
Perform the transformation. Must be implemented by subclasses.
Arguments
ydt(
data.table::data.table())
Data. One row per observation with at least columns$cols_y.
Returns
data.table::data.table() with the transformation applied to the columns $cols_y.
Method inverse_transform_posterior()
Perform the inverse transformation on a posterior predictive distribution characterized by the first and second moment. Must be implemented by subclasses.
Arguments
pred(
data.table::data.table())
Data. One row per observation characterizing a posterior predictive distribution with the columnsmeanandse.
Returns
data.table::data.table() with the inverse transformation applied to the columns mean and se.
Method inverse_transform()
Perform the inverse transformation. Must be implemented by subclasses.
Arguments
ydt(
data.table::data.table())
Data. One row per observation with at least columns$cols_y.
Returns
data.table::data.table() with the inverse transformation applied to the columns $cols_y.